An Automatic Sentence Bou Based on a Structured La

نویسندگان

  • Shinsuke Mori
  • Nobuyasu Itoh
چکیده

In this paper we describe an automatic sentence boundary detector, which inserts a period (sentence boundary marker) to a word sequence output by a speech recognizer. The state-ofthe-art automatic sentence boundary detectors insert a period at a position selected by a word tri-gram model from among candidates (long pauses) offered by an accoustic model. In contrast, the automatic sentence boundary detector presented in this paper is based on a structured language model (SLM), which regards a sentence as a word sequence with a syntactic structure. In the experiment we applied our automatic sentence boundary detector to Japanese broadcast lectures and compared the result with an automatic sentence boundary detector based on a word tri-gram model. The accuracy of our detector was 95.7%, which was higher than that for the state-of-the-art detector (95.2%). This result shows that an SLM works better than a word tri-gram model as an automatic sentence boundary detector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارائه سیستم خلاصه ساز متون فارسی برمبنای ویژگی های زبان شناختی و رگرسیون

Considering the vast amount of existing written information and the shortage of time, optimal summarization of books, articles, news reports, etc. on the Web is a major concern of researchers. In this paper, we propose a new approach for Persian single-document Summarization based on several linguistic features of text. In our approach after extracting the linguistic features for each sentence,...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Modèle de traduction statistique à fragments enrichi par la syntaxe. (A Syntax-Augmented Phrase-Based Statistical Machine Translation Model)

Traditional Statistical Machine Translation models are not aware of linguistic structure. Thus, target lexical choices and word order are controlled only by surface-based statistics learned from the training corpus. Knowledge of linguistic structure can be beneficial since it provides generic information compensating data sparsity. The purpose of our work is to study the impact of syntactic inf...

متن کامل

Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...

متن کامل

بررسی مقایسه‌ای تأثیر برچسب‌زنی مقولات دستوری بر تجزیه در پردازش خودکار زبان فارسی

In this paper, the role of Part-of-Speech (POS) tagging for parsing in automatic processing of the Persian language is studied. To this end, the impact of the quality of POS tagging as well as the impact of the quantity of information available in the POS tags on parsing are studied. To reach the goals, three parsing scenarios are proposed and compared. In the first scenario, the parser assigns...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002